If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-3t-8=0
a = 1; b = -3; c = -8;
Δ = b2-4ac
Δ = -32-4·1·(-8)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{41}}{2*1}=\frac{3-\sqrt{41}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{41}}{2*1}=\frac{3+\sqrt{41}}{2} $
| 2(6x+26)=x+51 | | 11j−4j−4j−j=12 | | 4(10-h)= | | -2x-6x-4=-20 | | 2y−1.7=3.3 | | 9(j+6)=90 | | -8=4u+8(u+5) | | 2(25-4x)=38-4x | | 90+x+46.1099=180 | | 3y=19+(5y-27) | | -20=-6x+2(x-2) | | -5n+-5n+3n−19n+16n=-10 | | 6=18t+3 | | (x5)+6=91 | | 31=p/6+24 | | 6x+38=62-2x | | h(h+1)-4=76 | | 3(v+7)-6v=3 | | 5n-28=27 | | -14n+10n+-3n=14 | | 2d-14=32 | | 9+2v=15 | | 11t-7t=20 | | 7x-10-2x=20 | | 32=−16t2+50t+5 | | 8x24x50x7=x | | 6x-5=6(x-4) | | 5=y-55/6 | | 2(16-4x)=8x+16 | | 3(5x-5)=15x-15 | | -3(x-5/8)=3/16 | | 1/7a+14=21 |